
OpenBox: A Software-Defined Framework for
Developing, Deploying, and Managing

Network Functions

Anat Bremler-Barr ∗
bremler@idc.ac.il

∗ School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
† School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

Yotam Harchol †
yotamhc@cs.huji.ac.il

David Hay†
dhay@cs.huji.ac.il

ABSTRACT
We present OpenBox — a software-defined framework
for network-wide development, deployment, and man-
agement of network functions (NFs). OpenBox effec-
tively decouples the control plane of NFs from their data
plane, similarly to SDN solutions that only address the
network’s forwarding plane.

OpenBox consists of three logic components. First,
user-defined OpenBox applications provide NF specifi-
cations through the OpenBox north-bound API. Sec-
ond, a logically-centralized OpenBox controller is able
to merge logic of multiple NFs, possibly from multiple
tenants, and to use a network-wide view to efficiently
deploy and scale NFs across the network data plane.
Finally, OpenBox instances constitute OpenBox’s data
plane and are implemented either purely in software or
contain specific hardware accelerators (e.g., a TCAM).
In practice, different NFs carry out similar process-
ing steps on the same packet, and our experiments in-
deed show a significant improvement of the network per-
formance when using OpenBox. Moreover, OpenBox
readily supports smart NF placement, NF scaling, and
multi-tenancy through its controller.

CCS Concepts
•Networks→Middle boxes / network appliances;
Programming interfaces; Network control algorithms;

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22–26, 2016, Florianopolis, Brazil
© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934875

Figure 1: The general architecture of the Open-
Box framework.

Keywords
Network functions; Middleboxes; Software-Defined Net-
works

1. INTRODUCTION
Software-defined networking (SDN) has been a tremen-

dous game-changer, as it decouples the control plane
of network forwarding appliances (e.g., switches and
routers) from their data plane. SDN has succeeded
in solving important problems in the forwarding plane,
such as cost, management, multi-tenancy, and high en-
try barriers that limit innovation.

However, in current SDN solutions, such as Open-
Flow [15], only the forwarding appliances are software-
defined, while the other data plane appliances continue
to suffer from all of the above problems. Moreover,
these appliances, which are usually referred to as net-
work functions (NFs) or middleboxes, often suffer from
additional, more complex problems as well. Yet studies
show that NFs constitute 40%-60% of the appliances

511

http://dx.doi.org/10.1145/2934872.2934875

deployed in large-scale networks [39]. In this paper
we present OpenBox, a framework and a protocol that
make network functions software-defined, using a logi-
cally centralized controller.

Traditionally, each middlebox was marketed as a sin-
gle piece of hardware, with its proprietary software al-
ready installed on it, for a high price. This prevented,
as noted above, on-demand scaling and provisioning.
The call for network function virtualization (NFV) [11]
aims to reduce the cost of ownership and management
of NFs by making NFs virtual appliances, running on
top of a hypervisor or in a container. While NFV im-
proves on-demand scaling and provisioning, it does not
solve other problems such as the limited and separate
management of each NF.

Network traffic nowadays usually traverses a sequence
of NFs (a.k.a. a service chain). For example, a packet
may go through a firewall, then through an Intrusion
Prevention System (IPS), and then through a load bal-
ancer, before reaching its destination. A closer look into
these NFs shows that many of them process the packets
using very similar processing steps. For example, most
NFs parse packet headers and then classify the packets
on the basis of these headers, while some NFs modify
specific header fields, or also classify packets based on
Layer 7 payload content. Nonetheless, each NF has its
own logic for these common steps. Moreover, each NF
has its own management interface: each might be man-
aged by a different administrator, who does not know,
or should not know, about the existence and the logic
of the other NFs.

Our OpenBox framework addresses the challenges of
efficient NF management by completely decoupling the
control plane of a NF from its data plane using a newly
defined communication protocol [35], whose highlights
are presented in this paper. The observation that many
NFs have similar data planes but different control logic
is leveraged in OpenBox to define general-purpose (yet
flexible and programmable) data plane entities called
OpenBox Instances (OBIs), and a logically-centralized
control plane, which we call the OpenBox Controller
(OBC). NFs are now written as OpenBox Applications
on top of the OBC, using a northbound programming
API. The OBC is in charge of deploying application
logic in the data plane and realizing the intended behav-
ior of the applications in the data path. The OpenBox
protocol defines the communication channel between
the OBC and the OBIs.

To the best of our knowledge, we are the first to intro-
duce such a general framework for software-defined NFs,
which includes specifications for a logically-centralized
controller and its northbound API for NF application
development, for an extensible data plane instance (OBI),
and for a communication protocol between the two. We
also propose a novel algorithm for merging the core
logic of multiple NF applications in the control plane,
such that computationally-intensive procedures (e.g.,
packet classification or DPI) are only performed once

for each packet. Since this implies that packets may
traverse a smaller number of physical locations, latency
is reduced and resources can be reallocated to provide
higher throughput. We compare our work to previ-
ous works that apply SDN ideas to the middlebox do-
main [2, 17,18,33,38] in Section 7.

We have implemented a prototype of the OpenBox
framework and we provide a simple installation script
that installs the entire system on a Mininet VM [28],
so users can easily create a large-scale network environ-
ment and test their network functions. All our code is
publicly available at [29].

OpenBox promotes innovation in the NF domain. De-
velopers can develop and deploy new NFs as OpenBox
applications, using basic building blocks (e.g., header
classification) provided by the framework. Furthermore,
the capabilities of the OpenBox data plane can be ex-
tended beyond these basic building blocks: an applica-
tion can provide an extension module code in the con-
trol plane. This module can then be injected into the
corresponding OBIs in the data plane, without having
to recompile or redeploy them.

OpenBox is designed to also support hardware-based
OBIs, which use specific hardware to accelerate the data
plane processing. For example, certain web optimizers
may require specific video encoding hardware. However,
the OBI with this hardware does not have to implement
the entire set of processing logic defined by the Open-
Box protocol. Instead, it can be chained with other,
software- or hardware-based OBIs, which would pro-
vide the additional logic. This reduces the cost of the
specialized OBI and the effort required to develop the
NF application that uses it. Developers may also create
a purely-software version of their optimizer OBI, which
will be used by the OpenBox framework to scale up at
peak load times.

2. ABSTRACTING PACKET PROCESS-
ING

We surveyed a wide range of common network func-
tions to understand the stages of packet processing per-
formed by each. Most of these applications use a very
similar set of processing steps. For example, most NFs
do some sort of header-based classification. Then, some
of them (e.g., translators, load balancers) do some packet
modification. Others, such as intrusion prevention sys-
tems (IPSs) and data leakage prevention systems (DLP),
further classify packets based on the content of the pay-
load (a process usually referred to as deep packet inspec-
tion (DPI)). Some NFs use active queue management
before transmitting packets. Others (such as firewalls
and IPSs) drop some of the packets, or raise alerts to
the system administrator.

In this section we discuss and present the abstraction
of packet processing applications required to provide a
framework for the development and deployment of a
wide range of network functions.

512

Read

Packets

Header

Classifier

Drop

Alert

Output

(a) Firewall

Read

Packets

Header

Classifier

Drop

Alert

Regex

Classifier

Regex

Classifier

Regex

Classifier
Output

(b) Intrusion Prevention System (IPS)

Figure 2: Sample processing graphs for firewall and intrusion prevention system NFs.

2.1 Processing Graph
Packet processing is abstracted as a processing graph,

which is a directed acyclic graph of processing blocks.
Each processing block represents a single, encapsulated
logic unit to be performed on packets, such as header
field classification, or header field modification. Each
block has a single input port (except for a few special
blocks) and zero or more output ports. When handling
a packet, a block may push it forward to one or more of
its output ports. Each output port is connected to an
input port of another block using a connector.

The notion of processing blocks is similar to Click’s
notion of elements [23] and a processing graph is simi-
lar to Click’s router configuration. However, the Open-
Box protocol hides lower level aspects such as the Click
push/pull mechanism, as these may be implementation-
specific. A processing block can represent any operation
on packets, or on data in general. A processing block
can buffer packets and coalesce them before forwarding
them to the next block, or split a packet.

In our implementation, described in Section 4, we use
Click as our data plane execution engine. We map each
OpenBox processing block to a compound set of Click
elements, or to a new element we implemented, if no
Click element was suitable.

Figure 2 shows sample processing graphs for a fire-
wall network function (Fig. 2(a)) and an IPS network-
function (Fig. 2(b)). The firewall, for example, reads
packets, classifies them based on their header field val-
ues, and then either drops the packets, sends an alert to
the system administrator and outputs them, or outputs
them without any additional action. Each packet will
traverse a single path of this graph.

Some processing blocks represent a very simple oper-
ation on packets, such as dropping all of them. Others
may have complex logic, such as matching the packet’s
payload against a set of regular expressions and out-
putting the packet to the port that corresponds to the
first matching regex, or decompressing gzip-compressed
HTTP packets.

Our OpenBox protocol defines over 40 types of ab-
stract processing blocks [35]. An abstract processing
block may have several implementations in the data
plane, depending on the underlying hardware and soft-
ware in the OBI. For example, one block implementa-
tion might perform header classification using a trie in

Abstract Block Name Role Class

FromDevice Read packets from T
interface

ToDevice Write packets to T
interface

Discard Drop packets T
HeaderClassifier Classify on C

header fields
RegexClassifier Classify using C

regex match
HeaderPayload Classify on header C
Classifier and payload
NetworkHeader Rewrite fields M
FieldRewriter in header
Alert Send an alert St

to controller
Log Log a packet St
ProtocolAnalyzer Classify based C

on protocol
GzipDecompressor Decompress HTTP M

packet/stream
HtmlNormalizer Normalize HTML M

packet
BpsShaper Limit data rate Sh
FlowTracker Mark flows M
VlanEncapsulate Push a VLAN tag M
VlanDecapsulate Pop a VLAN tag M

Table 1: Partial list of abstract processing
blocks. The class property is explained in Sec-
tion 2.2.1.

software while another might use a TCAM for this task
[42]. As further explained in Section 3 and in the pro-
tocol specification [35], the OBI informs the controller
about the implementations available for each supported
abstract processing block. The controller can then spec-
ify the exact implementation it would like the OBI to
use, or let the OBI use its default settings and choose
the implementation itself. The OpenBox protocol also
allows injecting new custom blocks from the controller
to the OBI, as described in detail in Section 3.2.1.

Table 1 lists some of the fundamental abstract pro-
cessing blocks defined by the OpenBox protocol. Each
block has its own configuration parameters and addi-
tional information, as described in Section 3.2.

2.2 Merging Multiple Graphs
Our framework allows executing multiple network func-

tions at a single data plane location. For example, pack-

513

Header

Classifier

Drop

Alert

(IPS)

Regex

Classifier

Regex

Classifier

Regex

Classifier
Output

Read

Packets

Header

Classifier

Drop

Alert

(Firewall)

Figure 3: A näıve merge of the two processing
graphs shown in Figure 2.

Read

Packets

Header

Classifier

Drop

Alert

(IPS)

Regex

Classifier

Regex

Classifier

Regex

Classifier
Output

Alert

(Firewall)

Alert

(Firewall)

Alert

(Firewall)

Alert

(Firewall)

Figure 4: The result of our graph merge algo-
rithm for the two processing graphs shown in
Figure 2.

ets may have to go through a firewall and then through
an IPS. We could simply use multiple processing graphs
at such locations, making packets traverse the graphs
one by one, as shown in Figure 3. In this section we
show how to merge multiple graphs while preserving
the correct processing order and results.

Consider two network functions as shown in Figure 2,
running at the same physical location in the data plane.
We would like to merge the two graphs into one, such
that the logic of the firewall is first executed on packets,
followed by the execution of the IPS logic. Addition-
ally, we would like to reduce the total delay incurred on
packets by both NFs by reducing the number of blocks
each packet traverses. The desired result of this pro-
cess is shown in Figure 4: We would like packets to go
through one header classification instead of two, and
execute the logic that corresponds to the result of this
classification.

2.2.1 Graph Merge Algorithm
Our graph merge algorithm must ensure that correct-

ness is maintained: a packet must go through the same
path of processing steps such that it will be classified,
modified and queued the same way as if it went through
the two distinct graphs. We also want to make sure that
static operations such as alert or log will be executed
on the same packet, at the same state, as they would
without merging. Our goal in this process is to reduce
the per-packet latency, so we would like to minimize the
length of paths between input and output terminals in
the graph.

In order to model the merge algorithm, we classify
blocks into five classes:

Algorithm 1 Path compression algorithm
1: function compressPaths(G = (V,E), root ∈ V)
Require: G is normalized
2: Q← empty queue
3: Add (root,−1) to Q
4: start← null
5: while Q is not empty do
6: (current, port)← Q.poll()
7: if current is a classifier, modifier or shaper then
8: if start is null then . Mark start of path
9: start← current

10: for each outgoing connector c from current do
11: if c.dst not in Q then
12: Add (c.dst, c.srcPort) to Q
13: end if
14: end for
15: continue
16: else . start is not null - end of path
17: end← current
18: if start and end are mergeable classifiers then
19: merged← merge(start, end)
20: for each output port p of merged do
21: Clone the path from start’s correct
22: successor for port p to end (exclusive)
23: Mark clone of last block before end
24: Clone the sub-tree from end’s correct
25: successor for port p
26: Rewire connectors from merged port p
27: to the clones and between clones
28: end for
29: current← merged
30: else . Not mergeable classifiers
31: if start and end are classifiers then
32: Treat start and end as a single classifier
33: Find next classifier, modifier or shaper
34: and mark the last block before it.
35: end if
36: end if
37: for each outgoing connector c from current do
38: Find mergeable blocks from c to a marked
39: block. Merge and rewire connectors
40: end for
41: if graph G was changed then
42: Restart compressPaths(G, current)
43: end if
44: end if
45: else . Skip statics, terminals
46: for each outgoing connector c from current do
47: if c.dst not in Q then
48: Add (c.dst, c.srcPort) to Q
49: end if
50: end for
51: continue
52: end if
53: end while
54: return G
55: end function

• Terminals (T): blocks that start or terminate the
processing of a packet.

• Classifiers (C): blocks that, given a packet, clas-
sify it according to certain criteria or rules and
output it to a specific output port.

• Modifiers (M): blocks that modify packets.

• Shapers (Sh): blocks that perform traffic shap-
ing tasks such as active queue management or rate
limiting.

514

• Statics (St): blocks that do not modify the packet
or its forwarding path, and in general do not be-
long to the classes above.

We use these classes in our graph merge algorithm in
order to preserve the correctness of the merged graph:
We can change the order of static blocks, or move classi-
fiers before static blocks, but we cannot move classifiers
across modifiers or shapers, as this might lead to incor-
rect classification. We can merge classifiers, as long as
we pay special attention to the rule set combination and
output paths. We can also merge statics and modifiers
in some cases. The right column in Table 1 specifies the
class of each block.

Our algorithm works in four stages. First, it nor-
malizes each processing graph to a processing tree, so
that paths do not converge.1 Then, it concatenates the
processing trees in the order in which the correspond-
ing NFs are processed. Note that a single terminal in
the original processing graph may correspond to several
leaves in the processing tree. A copy of the subsequent
processing tree will be concatenated to each of these
leaves. Nevertheless, the length of any path in the tree
(from root to leaf) is exactly the same as it was in the
original processing graph, without normalization.2

While the number of blocks in the merged tree can
increase multiplicatively,3 in practice this rarely hap-
pens, and most importantly, the number of blocks in
the graph has no effect on OBI performance. The sig-
nificant parameter is the length of paths, as longer paths
mean greater delay. Moreover, two graphs need not be
merged if the overheads are too high. The controller is
responsible for avoiding such a merger.

As the processing tree is in fact a collection of paths,
the third stage in our algorithm is re-ordering and merg-
ing blocks along a path. This is shown in Algorithm 1.
As mentioned before, the algorithm works by examin-
ing the class of the blocks and deciding whether blocks
can be merged (Line 7).

Perhaps the most interesting case is merging two clas-
sifier blocks. Specifically, classifier blocks of the same
type can support merging by having their own merge
logic. The merge should resolve any conflicts according
to the ordering and priorities of the two input applica-
tions (if applicable) and on the priority of the merged
rules (Lines 18-29).

For example, in our implementation, the HeaderClas-
sifier block is mergeable: it implements a specific Java
interface and a mergeWith(...) method, which cre-
ates a cross-product of rules from both classifiers, or-
1The process of graph normalization may theoretically lead to
an exponential number of blocks. This only happens with a cer-
tain graph structure, and it never happened in our experiments.
However, if it does, our system rolls back to the näıve merge.
2The process of graph concatenation requires careful handling
of special cases with regard to input and output terminals. We
address these cases in our implementation. However, due to space
considerations, we omit the technical details from the paper.
3For graphs G1 = (V1, E1) and G2 = (V2, E2), the number of
blocks in the merged graph is up to |V1|2(1 + |V2|2)

OpenBox

Controller

OpenBox

Applications

OBI VM

HW OBI

OBI VM

1

2

3
4

5

6

A

B

Figure 5: Sample OpenBox network with dis-
tributed data plane processing (as in Figure 6).

ders them according to their priority, removes dupli-
cate rules caused by the cross-product and empty rules
caused by priority considerations, and outputs a new
classifier that uses the merged rule set. After merging
classifier blocks, our algorithm rewires the connectors
and clones the egress paths from the classifiers such
that packets will correctly go through the rest of the
processing blocks. The merge algorithm is then applied
recursively on each path, to compress these paths when
possible. See the paths from the header classifier block
in Figure 4 for the outcome of this process in our ex-
ample.

It is also possible to merge static and modifier blocks,
if they are of the same class and type, and their param-
eters do not conflict. For example, two instances of a
rewrite header block can be merged in constant time if
they modify different fields, or the same field with the
same value (lines 38-39 in Algorithm 1).

The last stage of our algorithm takes place after the
merge process is completed. It eliminates copies of the
same block and rewires the connectors to the remaining
single copy, so that eventually the result is a graph as
shown in Figure 4, and not necessarily a tree. Note that
the diameter of the merged processing graph, as shown
in Figure 4, is shorter (six blocks) than the diameter of
the graph we would have obtained from a näıve merge
(seven blocks, see Figure 3).

The correctness of the process stems from the follow-
ing: First, any path a packet would take on the näıvely
merged graph exists, and will be taken by the same
packet, on the normalized and concatenated graph. Sec-
ond, when merging classifiers we duplicate paths such
that the previous property holds. Third, we only elimi-
nate a copy of a block if the remaining copy is pointing
to exactly the same path (or its exact copy).

3. OPENBOX FRAMEWORK ARCHIT-
ECTURE

In this section we describe the OpenBox framework
in detail by dividing it into layers, as shown in Fig-

515

ure 1: from OpenBox service instances (OBIs) in the
data plane at the bottom, through the OpenBox proto-
col and the OpenBox controller (OBC), to the applica-
tions at the top.

3.1 Data Plane
The OpenBox data plane of consists OpenBox service

instances (OBIs), which are low-level packet processors.
An OBI receives a processing graph from the controller
(described in Section 3.3). The OBI applies the graph
it was assigned on packets that traverse it. It can also
answer queries from the controller and report its load
and system information.

OBIs can be implemented in software or hardware.
Software implementations can run in a VM and be pro-
visioned and scaled on demand. An OBI provides im-
plementations for the abstract processing blocks it sup-
ports, and declares its implementation block types and
their corresponding abstract block in the Hello message
sent to the OBC. The controller may use a specific im-
plementation in the processing graph it sends to the
OBI, or use the abstract block name, leaving the choice
of exact implementation to the OBI.

An OBI may be in charge of only part of a processing
graph. In this case, one or more additional OBIs should
be used to provide the remaining processing logic. A
packet would go through a service chain of all corre-
sponding OBIs, where each OBI attaches metadata (us-
ing some encapsulation technique [12, 19, 37] see also
Section 3.4) to the packet before sending it to the next
OBI. Upon receiving a packet from a previous OBI, the
current OBI decodes the attached metadata and acts
according to it.

For example, consider the merged processing graph
shown in Figure 4 and suppose its header classifica-
tion block can be implemented in hardware, e.g., using
a TCAM. Thus, we can realize this processing graph
using two OBIs. The first OBI, residing on a server
or a dedicated middlebox equipped with the appropri-
ate hardware, performs only packet classification. Only
if the packet requires further processing does the first
OBI store the classification result as metadata, attach
this metadata to the packet, and send it to another,
software-based OBI, to perform the rest of the process-
ing. The split processing graphs are illustrated in Fig-
ure 6. Even an SDN switch that supports packet en-
capsulation could be used as the first OBI.

Figure 5 illustrates this scenario in a network-wide
setting: packets from host A (Step 1 in the figure) to
host B should go through the firewall and the IPS. This
is realized using two OBIs as described above. The
first performs header classification on hardware (Step
2), then sends the results as metadata attached to the
packets (Step 3) to the next, software-based OBI. In
this example, this OBI is scaled to two instances, mul-
tiplexed by the network for load balancing. It extracts
metadata from the packets (Step 4), performs the rest
of the processing graph, and sends the packets out with-

out metadata (Step 5). Eventually the packets are for-
warded to host B (Step 6).

In our implementation, we use NSH [37] to attach
metadata to packets. Other methods such as VXLAN
[24], Geneve [19], and FlowTags [12] can also be used
but may require increasing the MTU in the network,
which is a common practice in large scale networks [34].
Different OpenBox applications may require different
size metadata. In most cases, we estimate the metadata
to be a few bytes, as it should only tell the subsequent
OBI which path in the processing graph it should fol-
low. Nevertheless, it is important to note that attaching
metadata to packets is required only when two blocks
that have originated from the same OpenBox applica-
tion are split between two OBIs.

Finally, an OBI can use external services for out-
of-band operations such as logging and storage. The
OpenBox protocol defines two such services, for packet
logging and for packet storage (which can be used for
caching or quarantine purposes). These services are
provided by an external server, located either locally
on the same machine as the OBI or remotely. The ad-
dresses and other parameters of these servers are set for
the OBI by the OBC.

3.2 The OpenBox Protocol
The OpenBox communication protocol [35] is used by

OBIs and the controller (OBC) to communicate with
each other. The protocol defines a set of messages for
this communication and a broad set of processing blocks
that can be used to build network function applications.

Abstract processing blocks are defined in the proto-
col specification. Each abstract block has its own con-
figuration parameters. In addition, similarly to Click
elements [23], blocks may have read handles and write
handles. A read handle in our framework allows the
controller, and applications that run on top of it, to
request information from a specific processing block in
the data plane. For example, it can ask a Discard block
how many packets it has dropped. A write handle lets
the control plane change a value of a block in the data
plane. For example, it can be used to reset a counter,
or to change a configuration parameter of a block.

3.2.1 Custom Module Injection
An important feature in the OpenBox protocol al-

lows injecting custom software modules from the control
plane to OBIs, if supported by the specific OBI imple-
mentation. Our implementation, described in Section 4,
supports this capability. This allows application devel-
opers to extend existing OBIs in the data plane without
having to change their code, or to compile and re-deploy
them.

To add a custom module, an application developer
creates a binary file of this module and then defines any
new blocks implemented by this module, in the same
way as existing blocks are defined in the protocol. The
format of the binary file depends on the target OBI (in

516

Read

Packets

Header

Classifier

Drop

Output
Write

Metadata

Encapsulate

Metadata

(a) First OBI: Performs header classification on
hardware TCAM and, if necessary, forwards the
results as metadata along with the packet to next
OBI.

Read

Packets

Drop

Alert

(IPS)

Regex

Classifier

Regex

Classifier

Regex

Classifier
Output

Alert

(Firewall)

Alert

(Firewall)

Alert

(Firewall)

Alert

(Firewall)

Decapsulate

Metadata

Read

Metadata

(b) Second OBI: Receives header classification results and applies the cor-
responding processing path.

Figure 6: Distributed processing in data plane with the processing graph from Figure 4.

our implementation the file is a compiled Click mod-
ule). When such a module is used, the controller sends
an AddCustomModuleRequest message to the OBI, pro-
viding the module as a binary file along with metadata
such as the module name. In addition, this message
contains information required in order to translate the
configuration from the OpenBox notation to the nota-
tion expected by the lower level code in the module.

A custom module should match the target OBI. A
module developer may create multiple versions of a cus-
tom module and let the controller choose the one that
is best suited to the actual target OBI.

3.3 Control Plane
The OpenBox controller (OBC) is a logically cen-

tralized software server. It is responsible for manag-
ing all aspects of the OBIs: setting processing logic,
and controlling provisioning and scaling of instances.
In an SDN network, the OBC can be attached to a
traffic-steering application [36] to control chaining of
instances and packet forwarding between them. OBC
and OBIs communicate through a dual REST channel
over HTTPS, and the protocol messages are encoded
with JSON [10].

The OBC provides an abstraction layer that allows
developers to create network-function applications by
specifying their logic as processing graphs. We use the
notion of segments to describe logical partitions in the
data plane. Different segments can describe different
departments, administrative domains, or tenants, and
they can be configured with different policies and run
different network function applications. Segments are
hierarchical, so a segment can contain sub-segments.
Each OBI belongs to a specific segment (which can,
in turn, belong to a broader segment). Applications
declare their logic by setting processing graphs to seg-
ments, or to specific OBIs. This approach allows for
flexible policies in the network with regard to secu-
rity, monitoring, and other NF tasks, and by definition,
supports the trend of micro-segmentation [41]. Micro-
segmentation reduces the size of network segments to
allow highly customized network policies.

Upon connection of an OBI, the OBC determines
the processing graphs that apply to this OBI in accor-
dance with its location in the segment hierarchy. Then,
for each OBI, the controller merges the corresponding
graphs to a single graph and sends this merged process-
ing graph to the instance, as discussed in Section 3.2.
Our OBC implementation uses the algorithm presented
in Section 2.2 to merge the processing graphs.

The controller can request system information, such
as CPU load and memory usage, from OBIs. It can
use this information to scale and provision additional
service instances, or merge the tasks of multiple under-
utilized instances and take some of them down. Ap-
plications can also be aware of this information and,
for example, reduce the complexity of their processing
when the system is under heavy load (to avoid packet
loss or to preserve SLAs).

The OBC, which knows the network topology and
the OBI locations, is in charge of setting the forward-
ing policy chains. It does so on the basis of the actual
deployment of processing graphs to OBIs. As Open-
Box applications are defined per segment, the OBC is
in charge of deciding which OBI(s) in a segment will be
responsible for a certain task, and directing the corre-
sponding traffic to this OBI.

3.4 OpenBox Applications
An application defines a single network function (NF)

by statement declarations. Each statement consists of a
location specifier, which specifies a network segment or
a specific OBI, and a processing graph associated with
this location.

Applications are event-driven, where upstream events
arrive at the application through the OBC. Such events
may cause applications to change their state and may
trigger downstream reconfiguration messages to the data
plane. For example, an IPS can detect an attack when
alerts are sent to it from the data plane, and then change
its policies in order to respond to the attack; these pol-
icy changes correspond to re-configuration messages in
the data plane (e.g., block specific network segments,
block other suspicious traffic, or block outgoing traffic
to prevent data leakage). Another example is a request

517

for load information from a specific OBI. This request
is sent from the application through the OBC to the
OBI as a downstream message, which will later trigger
an event (sent upstream) with the data.

Although events may be frequent (it depends on the
applications), graph changes are not frequent in general,
as application logic does not change often. Applications
that are expected to change their logic too frequently
may be marked so that the merge algorithm will not
be applied on them. The controller can also detect and
mark such applications automatically.

3.4.1 Multi-Tenancy
The OpenBox architecture allows multiple network

tenants to deploy their NFs through the same OBC.
For example, an enterprise chief system administrator
may deploy the OpenBox framework in the enterprise
network and allow department system administrators
to use it in order to deploy their desired network func-
tions.

The OBC is responsible for the correct deployment in
the data plane, including preserving application priority
and ordering. Sharing the data plane among multiple
tenants helps reduce cost of ownership and operating
expenditure as OBIs in the data plane may have much
higher utilization, as discussed in Section 5.

3.4.2 Application State Management
Network functions are, in many cases, stateful. That

is, they store state information and use it when han-
dling multiple packets of the same session. For exam-
ple, Snort stores information about each flow, which in-
cludes, among other things, its protocol and other flags
it may be marked with [40].

Since the state information is used in the data plane
of NFs as part of their packet processing, it is important
to store this information in the data plane, so it can be
quickly fetched and updated. It cannot, for example,
be stored in the control plane. Hence, the OpenBox
protocol defines two data structures that are provided
by the OBIs, in the data plane, for storing and retrieving
state information.

The metadata storage is a short-lived key-value stor-
age that can be used by an application developer to pass
information along with a specific packet, as it traverses
the processing graph. The information in the metadata
storage persists over the OBI service chain of a single
packet. It can be encapsulated and sent over from one
OBI to another, along with the processed packet, as
described in Section 3.1.

The other key-value storage available for applications
in the data plane is the session storage. This storage
is attached to a flow and is valid as long as the flow
is alive. It allows applications to pass processing data
between packets of the same flow. This is useful when
programming stateful NF applications such as Snort,
which stores flow-level metadata information such as
flow tags, gzip window data, and search state.

Frameworks such as OpenNF [18] can be used as-is to
allow replication and migration of OBIs along with their
stored data, to ensure correct behavior of applications
in such cases.

4. IMPLEMENTATION
We have implemented the OpenBox framework in two

parts: a software-based OBI, and an OpenBox con-
troller. We provide a simple installation script that
installs both on a Mininet VM [28]. All our code is
available at [29].

4.1 Controller Implementation
Our controller is implemented in Java in about 7500

lines of code. It runs a REST server for communica-
tion with OBIs and for the management API. The con-
troller exposes two main packages. The first package
provides the basic structures defined in the protocol,
such as processing blocks, data types, etc. The other
package lets the developer define applications on top
of the controller, register them, and handle events. It
also allows sending requests such as read requests and
write requests, which in turn invoke read and write han-
dles, accordingly, in the data plane (as described in Sec-
tion 3.2).

When an application sends a request, it provides the
controller with callback functions that are called when
a response arrives back at the controller. The controller
handles multiplexing of requests and demultiplexing of
responses.

Along with the controller implementation, we have
implemented several sample applications such as a fire-
wall/ACL, IPS, load balancer, and more. In addition,
we implemented a traffic steering application as a plu-
gin for the OpenDaylight OpenFlow controller [14]. We
use it to steer the traffic between multiple OBIs.

4.2 Service Instance Implementation
Our OBI implementation is divided into a generic

wrapper and an execution engine. The generic wrapper
is written in Python in about 5500 lines of code. It
handles communication with the controller (via a local
REST server), storage and log servers, and translates
protocol directives to the specific underlying execution
engine.

The execution engine in our implementation is the
Click modular router [23], along with an additional layer
of communication with the wrapper and storage server,
and several additional Click elements that are used to
provide the processing blocks defined in the protocol
(a single OpenBox block is usually implemented using
multiple Click blocks). All our code for the execution
engine is written as a Click user-level module, without
any modification to the core code of Click. The code of
this module is written in C++ and consists of about 2400
lines. Note that by changing the translation module in
the wrapper, the underlying execution engine can be

518

VM1

Firewall1

VM2

Firewall2

(a) Two-firewall service chain

VM1

Firewall

VM2

IPS

(b) Firewall and IPS service chain

VM1

OBI1

VM2

OBI2

(c) Test setup with OpenBox

Figure 7: Test setups under pipelined NF configuration.

replaced. This is necessary, for example, when using an
execution engine implemented in hardware.

Finally, our OBI implementation supports custom mod-
ule injection, as described in Section 3.2.1. An applica-
tion developer who wishes to extend the OBI with new
processing blocks should write a new Click module (in
C++) that implements the underlying Click elements
of these new blocks, and implement a translation ob-
ject (in Python) that helps our wrapper translate new
OpenBox block definitions to use the code provided in
the new Click module.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Environment
Our experiments were performed on a testbed with

the following machines: a traffic generator with an In-
tel Xeon E3-1270 v3 CPU and 32GB RAM, and a hy-
pervisor with a Dual Intel Xeon E5-2690 v3 CPU and
384GB RAM. Both machines run Linux Ubuntu 14.04,
with VMs running on the hypervisor using KVM. The
machines are connected through a 10 Gbps network.
All NFs and OBIs, as well as the OBC, run on top of
the hypervisor. We play a packet trace captured from
a campus wireless network on the traffic generator, at
10Gbps. All packets go through the hypervisor on their
corresponding service chain as defined for each test.

5.2 Test Applications
For our tests we have implemented a set of sample

OpenBox applications. For each of the following appli-
cations, we also created a reference stand-alone version,
in Click.

Sample Firewall.
We use a ruleset of 4560 firewall rules from a large

firewall vendor. Our OpenBox firewall application reads
the rules from a file and generates a processing graph
that raises an alert for packets that match any non-
default rule. In order to correctly measure through-
put, we have modified the rules so that packets are
never dropped. Instead, all packets are transmitted un-
touched to the output interface.

Sample IPS.
We use Snort web rules to create a sample IPS that

scans both headers and payloads of packets. If a packet
matches a rule, an alert is sent to the controller. As in
the firewall, we have modified the rules to avoid drop-
ping packets.

Sample Web Cache.
Our web cache stores web pages of specific websites.

If an HTTP request matches cached content, the web
cache drops the request and returns the cached con-
tent to the sender. Otherwise, the packet continues
untouched to the output interface. When measuring
performance of service chains that include this NF, we
only send packets that do not match cached content.

Sample Load Balancer.
This NF uses Layer 3 classification rules to split traffic

to multiple output interfaces.

5.3 Test Setup
We tested our implementation of the OpenBox frame-

work using a single controller and several VMs. Each
VM either runs Click with the reference standalone NF
implementation, or an OBI that is controlled by our
OBC.

We consider two different NF configurations in our
tests. In the first configuration, packets from the traffic
generator to the sink go through a pipeline of two NFs.
The throughput in such a configuration is dominated by
the throughput of the slowest NF in the pipeline. The
latency is the total time spent while processing the two
NFs in the pipeline.

Figures 7 illustrates two test setups under this config-
uration, without OpenBox: In the first test, packets go
through two firewalls with distinct rule sets (Fig. 7(a)).
In the second test, packets first go through a firewall
and then through an IPS (Fig. 7(b)). With OpenBox
(Fig. 7(c)), all corresponding NFs are executed on the
same OBI, and the OBI is scaled to use the same two
VMs used without OpenBox. In this case, traffic is
multiplexed to the two OBIs by the network forward-
ing plane. We show that the OpenBox framework re-
duces the total latency (due to the merging of the two

519

VM1

Firewall1

VM2

Firewall2

(a) Two-firewall service chains

VM1

Firewall

VM2

IPS

(b) A firewall service chain and an
IPS service chain

VM1

OBI1

VM2

OBI2

(c) Test setup with OpenBox

Figure 8: Test setups under the distinct service chain configuration.

Network Functions
VMs Throughput Latency
Used [Mbps] [µs]

Firewall 1 840 48

IPS 1 454 76

Regular FW+FW chain 2 840 96
OpenBox: FW+FW OBI 2 1600 (+90%) 48 (-50%)

Regular FW+IPS chain 2 454 124
OpenBox: FW+IPS OBI 2 846 (+86%) 80 (-35%)

Table 2: Performance results of the pipelined
NFs configuration (Figure 7).

processing graphs) and increases the overall throughput
(because of the OBI scaling).

Another NF configuration we consider is when pack-
ets of different flows go through different, distinct ser-
vice chains, and thus visit different NFs. Under this
configuration we test the following scenarios, as illus-
trated in Figure 8: in Figure 8(a) packets either go
through Firewall 1 or through Firewall 2 while in Fig-
ure 8(b) packets either go through a firewall or through
an IPS. We use the same rule sets as in the previous
tests.

Merging the two NFs in this case provides dynamic
load balancing by leveraging off-peak times of one NF
to provide higher throughput to the other. We use the
OBI setup as shown in Figure 8(c), this time only ap-
plying the processing graph of one NF on each packet,
according to its type or flow information.

Note that in both configurations, each NF could come
from a different tenant, or a different administrator.
The different NFs are not aware of each other, but as
discussed in Section 3, they may be executed in the
same OBI.

5.4 Results

5.4.1 Data Plane Performance

Pipelined NFs.
Table 2 shows the results of the pipelined NF configu-

ration. Without OpenBox, the throughput is bounded
by the throughput of the slowest NF in the pipeline.
Thus, in the two pipelined firewalls, the overall through-
put is the throughput of a single firewall (both firewalls
show the same performance as we split rules evenly).
In the pipelined firewall and IPS service chain, the IPS

dominates the overall throughput as it is much slower
than the firewall, since it performs deep packet inspec-
tion. The overall latency is the sum of the latencies of
both NFs in the chain, as packets should go through
both VMs.

With OpenBox, the controller merges the two NFs
into a single processing graph that is executed on OBIs
on both VMs. Packets go through one of the VMs
and are processed according to that processing graph.
We use static forwarding rules to load-balance the two
OBIs. The overall throughput is of the two OBIs com-
bined. The overall latency is of a single OBI, as packets
are only processed by one of the VMs.

OpenBox improves the throughput by 90% in the
two-firewall setup and by 86% in the firewall and IPS
setup. It reduces latency by 50% and 35% in these two
setups, respectively.

Distinct Service Chains.
Figure 9(a) shows the achievable throughput regions

for the distinct service chain configuration with two fire-
walls, with and without OpenBox. Without OpenBox
(see red, dashed lines), each firewall can utilize only the
VM it runs on, and thus its throughput is limited to
the maximal throughput it may have on a single VM.
With OpenBox (see blue, solid line), each firewall can
dynamically (and implicitly) scale, when the other NF
is under-utilized. We note that if both NFs are likely to
be fully utilized at the same time, merging them may
not be worthwhile, but they can still be implemented
with OpenBox and deployed in different OBIs.

Figure 9(b) shows the achievable throughput regions
when merging a firewall with an IPS. In this case the
IPS dominates OBI throughput and it might be less
beneficial to merge the two service chains, unless the
firewall is never fully utilized while the IPS is often over-
utilized.

Discussion.
Two factors help OpenBox improve data plane per-

formance. First, by merging the processing graphs and
eliminating multiple classifiers, OpenBox reduces latency
and the total computational load. Second, OpenBox al-
lows more flexible NF deployment/replication than with
monolithic NFs, so packets should traverse fewer VMs,

520

Maximal throughput of Firewall 1 [Mbps]

0 500 1000 1500 2000

M
a
x
im

a
l
th

ro
u
g
h
p
u
t
o
f
F

ir
e
w

a
ll

2
 [
M

b
p
s
]

0

500

1000

1500

2000

Dynamic Load Balancing Throughput Region

Static Load Balancing Throughput Region

(a) Two Firewalls

Maximal throughput of IPS [Mbps]

0 500 1000 1500 2000

M
a
x
im

a
l
th

ro
u
g
h
p
u
t
o
f
F

ir
e
w

a
ll

[M
b
p
s
]

0

500

1000

1500

2000

Dynamic Load Balancing Throughput Region

Static Load Balancing Throughput Region

(b) Firewall and IPS

Figure 9: Achievable throughput for the distinct service chain configuration (Figures 8(a) and 8(b))
compared to the achievable throughput of the two OBIs that merge both NFs (Figure 8(c)).

Gateway

Firewall

Dept.

Firewall

Load

Balancer

Web

Cache

Figure 10: Service chain for the graph merge
algorithm test.

Merged graph size [Number of connectors]

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
e
rg

e
 t
im

e
 [
m

s
]

0

50

100

150

200

250

300

350

400

Figure 11: Scalability of the graph merge algo-
rithm.

just as in the case when each NF is deployed separately.
This flexible deployment also allows resource sharing.

5.4.2 Performance of the Graph Merge Algorithm
In order to evaluate the impact of our graph merge

algorithm on the performance of the data plane, we
considered a longer service chain, as illustrated in Fig-
ure 10. In this service chain packets go through a first
firewall and then through a web cache. If not dropped,
they continue to another firewall, and eventually go
through an L3 load balancer.

We implemented this service chain in OpenBox by
merging the four NFs into a single processing graph.
When using a näıve merge, where graphs are simply
concatenated to each other, we obtain 749 Mbps through-
put (on a single VM, single core) for packets that do not
match any rule that causes a drop or DPI. When using

Operation Round Trip Time
SetProcessingGraph 1285 ms 4

KeepAlive 20 ms
GlobalStats 25 ms
AddCustomModule 124 ms

Table 3: Average round-trip time for common
messages between OBC and OBIs, running on
the same physical machine.

our graph merge algorithm, the throughput for the same
packets is 890 Mbps (20% improvement).

Figure 11 evaluates the scalability of the graph merge
algorithm. We tested the algorithm with growing sizes
of input graphs on the Xeon E5-2690 CPU. The merge
algorithm runs in orders of milliseconds, and the time
grows nearly linearly with the size of graphs.

5.4.3 Control Plane Communication
In addition to data plane performance, we also eval-

uated the performance of the communication with the
controller. Table 3 shows the round-trip time for three
common protocol operations: SetProcessingGraph is the
process of sending a SetProcessingGraphRequest from
the OBC to an OBI with a new processing graph for
the OBI, reconfiguring the execution engine and return-
ing a SetProcessingGraphResponse from the OBI to the
OBC. A KeepAlive message is a short message sent from
an OBI to the OBC every interval, as defined by the
OBC. GlobalStats is the process of sending a Global-
StatsRequest from the OBC to an OBI and returning
a GlobalStatsResponse from the OBI to the OBC, with
the OBI system load information (e.g., CPU and mem-
ory usage). AddCustomModule is the process of send-
ing an AddCustomModuleRequest from the OBC to a
supporting OBI with a custom binary module that ex-

4This operation involves (re-)configuration of Click elements,
which requires polling the Click engine until all elements are up-
dated. In Click, there is a hardcoded delay of 1000 ms in this
polling. This can be easily reduced, albeit with a change in the
core Click code.

521

tends the OBI behavior. In this test we used a module
of size 22.3 KB, which adds support for a single pro-
cessing block.

As these times were measured when the OBC and
the OBI run on the same physical machine, they ignore
network delays and mainly measure software delay.

6. DISCUSSION
This paper lays the foundations for a software-defined

framework for NFs. In this section we discuss additional
aspects of the proposed framework and possible future
research directions.

Security.
Having multiple applications from possibly multiple

tenants running on the same framework increases con-
cerns about security and information leakage. Several
previous works have addressed such concerns (e.g. [22,
25]) by creating privacy-preserving data structures for
packet classifiers. Such works can be applied on the
OpenBox framework as they are orthogonal to the Open-
Box solution.

The declarative northbound API of our OBC lets ap-
plications specify their logic and listen to events. How-
ever, the API does not let applications query the logic of
other applications, or the merged logic of specific OBIs.
The OBC is responsible for safely demultiplexing events
when these are signaled from the data plane. Each re-
quest from a specific application has its own ID and
each response carries this ID to allow correct demulti-
plexing.

In the data plane, one application can reduce the per-
formance of another application (possibly of a different
tenant), especially if two applications are merged and
executed on the same OBI. For example, a malicious
application can cause an increased classification over-
head by setting an overwhelming number of classifica-
tion rules.

Custom module injection may also expose new threats
to the data plane, especially in a multi-tenant environ-
ment. In such a case, we suggest that digital signatures
be enforced on all injected modules (namely, verifying
their security or origin before injecting them to the net-
work).

Control Level Graph Optimization.
The OBC can provide optimization to user-defined

processing graphs, in addition to that provided by the
merge algorithm presented in Section 2.2.1. For exam-
ple, it could reorder blocks or merge them, or even re-
move or replace blocks. The ability to split a processing
graph between multiple OBIs can also be used to auto-
matically optimize performance and for load balancing.

Debugging.
As with SDN applications, debugging of applications

to be deployed on top of the control plane northbound

API can be challenging. Works on SDN debugging such
as [20] could serve as a basis for future research on
OpenBox application debugging.

Application Programming Language and Verifica-
tion.

Our current northbound API merely exposes the pro-
tocol primitives and Events API to the application de-
veloper, using a set of Java classes and interfaces. How-
ever, higher level abstractions for applications, such as
dedicated programming languages or structures, could
provide more convenient ways to program NFs on top
of OpenBox. Such abstractions might simplify and en-
hance the merge process in the controller. Examples of
such abstractions for SDN applications are Frenetic/Py-
retic [13]. In addition, verification solutions such as [4]
might be applied on OpenBox applications, with the re-
quired adaptations, to provide offline verification before
deploying NFs.

7. RELATED WORK
In recent years, middleboxes and network functions

have been major topics of interest. In this section we
discuss and compare the state-of-the-art works that are
directly related to this paper.

CoMb [38] focuses on consolidating multiple virtual
middleboxes into a single physical data plane location,
thus improving the performance of the network in the
common case where not all the middleboxes have peak
load at the same time. E2 [33] is a scheduling frame-
work for composition of multiple virtual NFs. It tar-
gets a very specific hardware infrastructure, and man-
ages both the servers on which NFs are running and the
virtual network switches that interconnect them. Un-
like OpenBox, CoMb and E2 only decompose NFs to
provide I/O optimizations such as zero-copy and TCP
reconstruction, but not to reuse core processing blocks
such as classifiers and modifiers. Specifically, the CoMb
paper has left for future research the exploration of the
choice of an optimal set of reusable modules [38, Section
6.3]. We view our paper as another step forward in this
direction.

xOMB [1] presents a specific software platform for
running middleboxes on general purpose servers. How-
ever, it does not consolidate multiple applications to
the same processing pipeline. ClickOS [26] is a runtime
platform for virtual NFs based on the Click modular
router [23] as the underlying packet processor. ClickOS
provides I/O optimizations for NFs and reduced latency
for packets that traverse multiple NFs in the same phys-
ical location. ClickOS does not have a network-wide
centralized control, and it does not merge multiple NFs,
but only chains them and optimizes their I/O.

Commercial solutions such as OpenStack [31], Open-
MANO [30], OpNFV [32], and UNIFY [21] are focused
on the orchestration problem. They all assume each
NF is a monolithic VM, and try to improve scaling,

522

placement, provisioning, and migration. Stratos [17]
also provides a solution for NFV orchestration, includ-
ing placement, scaling, provisioning, and traffic steer-
ing.

OpenNF [18] proposes a centralized control plane for
sharing information between software NF applications,
in cases of NF replication and migration. However, their
work focuses only on the state sharing and on the for-
warding problems that arise with replication and mi-
gration, so in a sense it is orthogonal to our work.

OpenState [5] and SNAP [3] are programming lan-
guage for stateful SDN switches. OpenState makes it
possible to apply finite automata rules to switches, rather
than match-action rules only. SNAP takes a network-
wide approach where programs are written for “one big
switch” and the exact local policies are determined by
the compiler. Both these works are focused on header-
based processing, but such ideas could be useful to cre-
ate programming languages on top of the OpenBox frame-
work, as discussed in Section 6.

To the best of our knowledge, Slick [2] is the only
work to identify the potential in core processing step
reuse across multiple NFs. They present a framework
with centralized control that lets NF applications be
programmed on top of it, and use Slick machines in
the data plane to realize the logic of these applications.
The Slick framework is mostly focused on the place-
ment problem, and the API it provides is much more
limited than the OpenBox northbound API. Slick does
not share its elements across multiple applications and
the paper does not propose a general communication
protocol between data plane units and their controller.
Unlike our OBIs, Slick only support software data plane
units; these units cannot be extended. This work com-
plements ours as the solutions to the placement prob-
lems presented in [2] can be implemented in the Open-
Box control plane.

Our preliminary workshop paper [7] on OpenBox de-
scribed the proposed architecture but presented a very
limited framework that uses a unified processing pipeline
for merging multiple middleboxes. The proposed uni-
fied pipeline was very restrictive. In this paper we
present a much more flexible NF programming model,
including an algorithm to merge multiple applications
given this flexible model.

Another work [8] suggested extracting the process of
deep packet inspection (DPI) to an external network
service. This work shows how performing DPI for mul-
tiple middleboxes at a single location could improve
network performance. Still, middleboxes are assumed
to remain monolithic units, with their DPI logic out-
sourced to an external service.

OpenBox allows easier adoption of hardware accel-
erators for packet processing. Very few works have
addressed hardware acceleration in an NFV environ-
ment [27], and those that have focused on the hypervi-
sor level [9,16]. Such ideas can be used in the OpenBox

data plane by the OBIs, and thus provide additional
hardware acceleration support.

The Click modular software router [23] is an extend-
able software package for programming network routers
and packet processors. It has numerous modules for ad-
vanced routing and packet processing; additional mod-
ules can be added using the provided API. OpenBox
generalizes the modular approach of Click to provide an
network-wide framework for developing modular NFs.
We use Click as the packet processing engine, as part of
our software implementation for an OBI, described in
Section 4.

Another related work in this context is the P4 pro-
grammable packet processor language [6]. The P4 lan-
guage aims to define the match-action table of a general
purpose packet processor, such that it is not coupled
with a specific protocol or specification (e.g., OpenFlow
of a specific version). A P4 switch can be used as part
of the OpenBox data plane, by translating the corre-
sponding protocol directives to the P4 language.

8. CONCLUSIONS
This paper presents OpenBox, a software-defined fr-

amework for developing, deploying, and managing net-
work-functions. OpenBox decouples the control plane
of network-functions from their data plane, and allows
reuse of data plane elements by multiple logical NFs.
In addition to easier management, orchestration, provi-
sioning and scale, it provides greater flexibility in terms
of NF development and deployment, multi-tenancy sup-
port with complete tenant isolation, and improved data
plane performance.

We have implemented OpenBox and shown that it is
not only easy to deploy and to program but also im-
proves network performance. We envision that frame-
works such as OpenBox will pave the way for further
advances in network function virtualization (NFV) with
respect to NF programming, deployment, and easier
management, while maintaining and improving perfor-
mance. The flexible support for hardware accelerators
for packet processing makes OpenBox even more ap-
pealing as today most NFV frameworks assume com-
pletely virtual environments and do not support any
hardware accelerators [27].

Acknowledgments
We thank the reviewers of the SIGCOMM PC and our
shepherd Vyas Sekar for their valuable comments on
this paper. We also thank Pavel Lazar, Dan Shmidt,
and Dana Klein, for their part in the implementation of
the OpenBox framework. This research was supported
by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007–
2013)/ERC Grant agreement no 259085, the Israeli Cen-
ters of Research Excellence (I-CORE) program (Center
No. 4/11), and the Neptune Consortium, administered

523

by the Office of the Chief Scientist of the Israeli Min-
istry of Industry, Trade, and Labor.

9. REFERENCES
[1] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and

A. Vahdat. xOMB: extensible open middleboxes with
commodity servers. In ANCS, pages 49–60, 2012.

[2] B. Anwer, T. Benson, N. Feamster, and D. Levin.
Programming Slick Network Functions. In SOSR, pages
14:1–14:13, 2015.

[3] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and
D. Walker. SNAP: Stateful Network-Wide Abstractions for
Packet Processing. In SIGCOMM, 2016.

[4] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev,
M. Sagiv, M. Schapira, and A. Valadarsky. VeriCon:
towards verifying controller programs in software-defined
networks. In PLDI, page 31, 2014.

[5] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
OpenState: Programming platform-independent stateful
OpenFlow applications inside the switch. SIGCOMM
Comput. Commun. Rev., 44(2):44–51, Apr 2014.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 44(3):87–95, Jul 2014.

[7] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox:
Enabling Innovation in Middlebox Applications. In
HotMiddlebox, pages 67–72, 2015.

[8] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral. Deep
packet inspection as a service. In CoNEXT, pages 271–282,
2014.

[9] Z. Bronstein, E. Roch, J. Xia, and A. Molkho. Uniform
handling and abstraction of NFV hardware accelerators.
IEEE Network, 29(3):22–29, 2015.

[10] ECMA. The JSON data interchange format, October 2013.
http://www.ecma-international.org/publications/
files/ECMA-ST/ECMA-404.pdf.

[11] ETSI. Network functions virtualisation - introductory white
paper, 2012.
http://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[12] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul. Enforcing network-wide policies in the presence of
dynamic middlebox actions using flowtags. In NSDI, pages
533–546, 2014.

[13] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J.
Freedman, N. P. Katta, C. Monsanto, J. Reich, J. Rexford,
C. Schlesinger, D. Walker, and R. Harrison. Languages for
software-defined networks. IEEE Communications
Magazine, 51(2):128–134, February 2013.

[14] L. Foundation. Opendaylight.
http://www.opendaylight.org/.

[15] O. N. Foundation. Openflow switch specification version
1.4.0, October 2013.
https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.4.0.pdf.

[16] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen,
Y. Zhao, and X. Hu. OpenANFV: Accelerating network
function virtualization with a consolidated framework in
openstack. In SIGCOMM, pages 353–354, 2014.

[17] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,
X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar.
Stratos: A network-aware orchestration layer for
middleboxes in the cloud. CoRR, abs/1305.0209, 2013.

[18] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
enabling innovation in network function control. In
SIGCOMM, pages 163–174, 2014.

[19] J. Gross, T. Sridhar, P. Garg, C. Wright, I. Ganga,
P. Agarwal, K. Duda, D. Dutt, and J. Hudson. Geneve:

Generic network virtualization encapsulation. IETF
Internet-Draft, November 2015. https:
//tools.ietf.org/html/draft-ietf-nvo3-geneve-00.

[20] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown. I know what your packet did last hop: Using
packet histories to troubleshoot networks. In NSDI, pages
71–85, 2014.

[21] W. John, C. Meirosu, B. Pechenot, P. Skoldstrom,
P. Kreuger, and R. Steinert. Scalable Software Defined
Monitoring for Service Provider DevOps. In EWSDN,
pages 61–66, 2015.

[22] A. R. Khakpour and A. X. Liu. First step toward
cloud-based firewalling. In SRDS, pages 41–50, 2012.

[23] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans. Comput.
Syst., 18(3):263–297, Aug 2000.

[24] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal,
L. Kreeger, T. Sridhar, M. Bursell, and C. Wright. Virtual
extensible local area network. IETF Internet-Draft, August
2014. https://tools.ietf.org/html/rfc7348.

[25] D. A. Maltz, J. Zhan, G. G. Xie, H. Zhang,
G. Hjálmtýsson, A. G. Greenberg, and J. Rexford.
Structure preserving anonymization of router configuration
data. In IMC, pages 239–244, 2004.

[26] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. ClickOS and the art of network
function virtualization. In NSDI, pages 459–473, 2014.

[27] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten,
F. De Turck, and R. Boutaba. Network function
virtualization: State-of-the-art and research challenges.
IEEE Comm. Surveys Tutorials, 18(1):236–262, 2016.

[28] Mininet. http://mininet.org/.
[29] OpenBox Project Source Code.

https://github.com/OpenBoxProject.
[30] OpenMANO. https://github.com/nfvlabs/openmano.

[31] OpenStack open source cloud computing software.
https://www.openstack.org/.

[32] OpNFV. https://www.opnfv.org/.

[33] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda,
S. Ratnasamy, L. Rizzo, and S. Shenker. E2: a framework
for NFV applications. In SOSP, pages 121–136, 2015.

[34] P. Prakash, M. Lee, Y. C. Hu, R. R. Kompella, J. Wang,
and S. Dassarma. Jumbo frames or not: That is the
question! Technical Report 13-006, Purdue University,
Twitter, 2013.

[35] Openbox framework specification, January 2016.
http://www.deepness-lab.org/pubs/
OpenBoxSpecification1.1.0.pdf.

[36] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu. SIMPLE-fying middlebox policy enforcement using
SDN. In SIGCOMM, pages 27–38, 2013.

[37] P. Quinn, P. Agarwal, R. Manur, R. Fernando, J. Guichard,
S. Kumar, A. Chauhan, M. Smith, N. Yadav, and
B. McConnell. Network service header. IETF
Internet-Draft, February 2014. https:
//datatracker.ietf.org/doc/draft-quinn-sfc-nsh.

[38] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
Design and implementation of a consolidated middlebox
architecture. In NSDI, pages 323–336, 2012.

[39] J. Sherry and S. Ratnasamy. A survey of enterprise
middlebox deployments. Technical Report
UCB/EECS-2012-24, UC Berkeley, 2012.

[40] Snort users manual 2.9.7. http://manual.snort.org/.

[41] R. Stuhlmuller. Micro-Segmentation: VMware NSX’s Killer
Use Case, June 2014.
https://blogs.vmware.com/networkvirtualization/2014/
06/micro-segmentation-vmware-nsx.html.

[42] D. E. Taylor. Survey and taxonomy of packet classification
techniques. ACM Comput. Surv., 37(3):238–275, Sept.
2005.

524

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.opendaylight.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-00
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-00
https://tools.ietf.org/html/rfc7348
http://mininet.org/
https://github.com/OpenBoxProject
https://github.com/nfvlabs/openmano
https://www.openstack.org/
https://www.opnfv.org/
http://www.deepness-lab.org/pubs/OpenBoxSpecification1.1.0.pdf
http://www.deepness-lab.org/pubs/OpenBoxSpecification1.1.0.pdf
https://datatracker.ietf.org/doc/draft-quinn-sfc-nsh
https://datatracker.ietf.org/doc/draft-quinn-sfc-nsh
http://manual.snort.org/
https://blogs.vmware.com/networkvirtualization/2014/06/micro-segmentation-vmware-nsx.html
https://blogs.vmware.com/networkvirtualization/2014/06/micro-segmentation-vmware-nsx.html

	Introduction
	Abstracting Packet Processing
	Processing Graph
	Merging Multiple Graphs
	Graph Merge Algorithm

	OpenBox Framework Architecture
	Data Plane
	The OpenBox Protocol
	Custom Module Injection

	Control Plane
	OpenBox Applications
	Multi-Tenancy
	Application State Management

	Implementation
	Controller Implementation
	Service Instance Implementation

	Experimental Evaluation
	Experimental Environment
	Test Applications
	Test Setup
	Results
	Data Plane Performance
	Performance of the Graph Merge Algorithm
	Control Plane Communication

	Discussion
	Related Work
	Conclusions
	References

